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them against the normal calomel electrodes 3 and 10, which were kept at 
25°. The electrodes were connected by means of a glass-tube salt-bridge 
30 cm. long and 7 mm. in diameter having cotton plugs in the ends and 
filled with saturated potassium chloride solution. The average e.m.f. 
of these cells was 0.0377 volt at 30°, 0.0388 volt at 25° and 0.0398 volt 
at 20°. This gives as the electrode potential of these saturated calomel 
electrodes on the hydrogen scale —0.2457 volt at 30°, —0.2446 volt at 25°, 
and —0.2436 volt at 20°. This gives a temperature coefficient of 0.0002 
volt per degree. Fales and Mudge obtained the same value. 

Summary 

A method of making electrolytic mercurous chloride directly in saturated 
potassium chloride is outlined. 

The advantages of the method are that it gives a dependable quality 
of calomel mixed with finely divided mercury and it avoids tedious wash­
ing and shaking processes and the resultant uncertainties. 

The e.m.f. of the cell, Hg + HgCl, HgCl in satd. KCl, HgCl in iVKCl, 
HgCl + Hg is 0.0388 volt at 25°. 

The electrode potential of the saturated potassium chloride calomel half-
cell is —0.2446 volt at 25° on the hydrogen scale. 

The temperature coefficient of the saturated potassium chloride calomel 
half-cell is 0.0002 volt per degree for the temperature range 20° to 30°. 
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To a surprising degree the ordinary mass-action law, based on the 
properties of ideal gases, suffices for the treatment of measured gas equilib­
ria. However, the recent work of Larson and Dodge1 on the Haber equi­
librium at high pressures has shown an important deviation from the con­
sequences of the ideal-gas laws, namely, that the equilibrium constant, 
K6, at any temperature is found to be a function of the pressure. In 
the absence of data to the contrary, we must now believe that Kp will 
vary if the concentrations are varied at constant temperature and pressure 
—in other words, that KP is not strictly constant with respect to any change 

1 Larson and Dodge, THIS JOURNAL, 45, 2918 (1923); also a later paper by Larson, 
ibid., 46,367(1924). 
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of condition whatever. Such data can therefore be used, in principle, 
for testing assumed forms of the mass-action law. 

At present we are unable to test without hypothesis even the thermo­
dynamic consistency of data of this type. Existing pressure-volume-
temperature data must be supplemented with hypotheses enabling us 
to pass from the properties of pure gases to those of mixtures. The fu-
gacity rule of Lewis and Randall, which will be discussed below, contains 
this kind of hypothesis. The correlation of equilibrium data with equations 
of state is practically the mass-action problem, although the complete 
solution involves the untangling of implicit functions. 

In practise, it is very laborious to carry out the calculations upon data 
secured for an equilibrium of the above type. The writer has already 
spent as much time as seems justifiable in view of the circumstances, 
without arriving at either a satisfactory thermodynamic correlation of 
the data or any ground for suspecting their accuracy. In the course of 
the study, however, certain simple considerations have become obvious 
which seem to merit publication because they are apparently not generally 
perceived. Furthermore, a simplified experimental attack on the problem 
has suggested itself, the theory of which presents again obvious, though 
perhaps novel, aspects. 

Because of the various meanings of the term partial pressure, the term 
equilibrium pressure will be used in the following discussion to denote the 
pressure of a pure gas which is in equilibrium through a semi-permeable 
membrane with a system that contains the same gas in mixture with other 
gases and is at the same temperature. For greater clearness, when neces­
sary, this pressure may be called the equilibrium pressure of the gas in the 
mixture. This introduces no danger of error, since two systems in equilib­
rium through semi-permeable membranes with the same pressure of pure 
gas would be in equilibrium with each other at the giyen temperature with 
respect to transfer of the given gas. The term vapor pressure has some 
advantages over equilibrium pressure, but is readily misunderstood. 

For a thermodynamic derivation of a mass-action law a knowledge of 
the equations of state of the gases involved is not sufficient, even when 
supplemented with equations applying to the mixtures, but there is also 
needed some information or hypothesis concerning equilibrium pressures. 
In this statement, mass-action law means a relation containing concentra­
tions determinable by analysis rather than equilibrium pressures, which 
would have to be determined by special equilibrium measurements. One 
of the few treatments of a mass-action law for real gases is that of Wash­
burn.2 It is worth while to emphasize that the mass-action laws under 
discussion in that treatment are relations containing "partial pressures" 
(our equilibrium pressures) rather than concentrations. The fact is not 

1 Washburn, THIS JOURNAL, 32, 467 (1910), with especial reference to pp. 484-485. 
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pointed out that these pressures are not calculable from any rigorous equa­
tions given.3 

In order to fill the corresponding gap existing in the fugacity treatment, 
Lewis and Randall suggested the rule,4 from a partial analogy with 
Raoult's law, that the fugacity of a gas in a mixture (that is, the fugacity 
of the pure gas at the equilibrium pressure) is equal to its mole fraction in 
the mixture multiplied by its fugacity when pure at the temperature and 
total pressure of the mixture. That is, 

/ . = Xl f P (1) 

This rule reduces at large volumes to the following, 
pt = X1P*. (2) 

where p* is used, as by Lewis and Randall, to denote a very small pressure, 
and pe denotes the corresponding equilibrium pressure. 

Now this latter relation follows directly from our kinetic ideas of very 
dilute gases and it supplies sufficient information about equilibrium pres­
sures to fill the gap, if we have equations of state, not only for pure gases 
but also for mixtures. 

Let us start with a semi-permeable membrane exposed on one side 
to a gaseous mixture at a very low pressure p* and of a mole fraction x\ 
with respect to gas No. 1. On the other side is the pure gas 1 at the same 
temperature, and in equilibrium with the mixture through the membrane. 
Its pressure will then in general be denoted by pe, and in this case, by our 
assumption, Equation 2 will hold. 

Now let the pressure be increased on both sides, at constant temperature 
and constant composition of the mixture, in such a way as to preserve 
equilibrium. For maintenance of equilibrium the effect of pressure on the 
chemical potential, in, must be the same on both sides. Prom the Gibbs 
equation, 

(*£) = ( i T ) (3) 
\Ap /t,ni,m- • • \dni/t,P,ni,m• • • 

the right-hand member of which reduces in the case of the pure gas to 
V/ni, it follows then that 

V 3 F 

or, integrating, 
Ct" V Cp Z>V 

- dp. = — dp (5) 
Jp*m «1 Jp* a»i 

3 Equations 34 and 35 on p . 484 of Ref. 2, the simple mass-action law in terms of 
detennmable quantities, depend not merely on Boyle's and an extended Avogadro's law 
but also on the assumption that p» — px\. 

4 (a) Lewis and Randall, "Thermodynamics," McGraw-Hill Book Co., New York, 
1923, pp. 226-227; quoted in advance of publication by (b) Bichowsky, T H I S JOURNAL, 
44,116 (1922). 
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In the upper limits of the integral, pe is the equilibrium pressure corre­
sponding to the total pressure p of the mixture. If we add and subtract 
a term before integrating we get 

U, * dp° = A* W - nj d* + J,, * dp <8> 
where the last term refers to the pure gas, but the p is the total pressure 
of the mixture. Again adding and subtracting a term, we have 

I i •;dpe + RTlnp*x1 = ] (^ - -)7pT CP- dp + RTlnp* + RTInX1 (7) Jp*xi »1 Jp* \otii K1/
 r JP*ni 

and from the definition of fugacity it follows that 

RTInf. = P (^ -Z\dp + KTInU + RTIn X1 (8) 

This result coincides with the rule only if the integral equals zero. But 
the rule cannot be restricted to a particular value of the upper limit of the 
integral, nor to a particular concentration; therefore, the coefficient of 
dp must be zero for the rule to hold, as otherwise the integral could not be 
zero for various values of the upper limit. That is, whatever the com-

3 7 V 
position may be, .— = -> which states that the partial molal volume of 

the gas in the mixture is equal to the molal volume of the pure gas at the 
same temperature and pressure. In other words, the correctness of the 
Lewis and Randall rule depends upon the exactness of an analog of Dalton's 
law, which states that gases do not change in volume when mixed at con­
stant temperature and pressure. 

Lewis and Randall state that their generalized Raoult's law (which 
includes their rule as a special case) implies among other things that the 
volume and heat content are additive, but they do not indicate whether 
the exactness of their rule demands additivity of both volume and heat 
content or only one of these. Having shown above that it is sufficient 
if the volumes are additive, we may now indicate briefly a proof that if 
the volumes are additive the reversible heat of mixing will also be zero, 
so that the heat content will be additive and vice versa. 

Consider again the system with a semi-permeable membrane discussed 
above. The system is analogous to a system discussed by Planck5 con­
sisting of vapor and salt solution and his Equation 176 can be applied 
to our case. This equation gives on multiplying both sides by AF 

(W). - T W A 7 | 

(dp, 
\dT 

Now ( -p£) is finite, so that if either AV or \ is zero, the other must 

5 Planck, "Treatise on Thermodynamics," translated by Ogg, Longmans, Green 
and Co., 1903, p. 197. It is also given, for instance, in MacDougall's "Thermo­
dynamics and Chemistry," John Wiley and Sons, Inc., New York, 1921, p. 168. 

file:///otii
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also be zero. The quantity \c is the heat absorbed when a small unit of 
mass is reversibly transferred from pure gas to a large quantity of mixture 
of composition c and can readily be shown to equal the difference of the 
partial heat contents per unit of mass.6 AF is the corresponding volume 
increase. 

Of the three propositions—exactness of the Lewis and Randall rule, addi-
tivity of volumes, additivity of heat content—proof of any one is sufficient 
to prove the other two, providing we assume Equation 2 when necessary. 

It is known that the rule of additive volumes is not generally exact. 
To be sure, the large deviations reported by Fuchs7 were calculated, 
and not directly observed and are possibly all wrong; at any rate, the writer 
has confirmed Dalton's law within the experimental error (about 0.2%) 
in the case of a mixture of oxygen and atmospheric nitrogen at room tem­
perature and one atmosphere. On the other hand, Masson and Dolley8 

have found in careful experiments on binary mixtures of oxygen, argon, 
and ethylene that the law of additive partial volumes fails worse than 
Dalton's law itself. 

The integral I -̂ 1 dp can be evaluated graphically from an assumed 
\Otli « i / 

equation of state for mixtures, the lower limit being taken as zero, since 
the area from zero to the pressure p* is as small as we please to consider it. 
Van der Waals assumed that the equation of state for a mixture has the 
same form as for a pure gas, and that the constant bm for the mixture may 
be approximately calculated by the rule 

bm = biXi + b&2 + (10) 

Professor Keyes9 has reason to believe, from unpublished calculations 
on the M. I. D. tables10 for mixing nitrogen and hydrogen and from re­
cent unpublished observations, that this rule may be correct when applied 
to all the constants11 of the Keyes equation. 

It is to be emphasized that a determination of the mixture equation will 
bring with it a complete solution of the mass-action law for compressed 
gases, unless we should be forced to give up the attractive assumption given 
above in Equation 2. Naturally, such a solution will be too complex 
mathematically to be of convenient use in the calculation of concentrations, 
since these enter in a highly implicit manner. 

6 Compare Ref. 4 a, pp. 89-90. 
7 Fuchs, Z. physik. Chem., 92, 641 (1917). 
8 Masson and Dolley, Proc. Roy. Soc, 103A, 524 (1923). 
9 F. G. Keyes, private communication. 
10 Munitions Inventions Dept., Ministry of Munitions, Nitrogen Products Com­

mittee, Physical and Chemical Data of Nitrogen Compounds. From the M. I. D. Re­
search Laboratory, University College, London, 1918. 

11 Including, of course, the square root of A in A/{v + I)2 which root, as well as 
all the other constants, is expressed per mole or unit mass. 
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Using this mode of compounding the constants in the Keyes equation, 

the writer tried to check the Larson and Dodge data at 400°, after smooth­

ing for temperature, but found that the use of the integrals [ =- — ] dp 

did not lead to an improved agreement. So much uncertainty attaches to 
the values of the constants in the equations for the pure gases, especially 
ammonia, that no conclusion could be drawn, save that it is unprofitable 
to apply so complicated a calculation to so complicated an equilibrium 
in the present state of our knowledge of the constants of the gases. Other 
hypotheses as to equilibrium pressure were tried—subject to the same 
uncertainties. One of these hypotheses was that 

P. = rm d* (ID 
where the right-hand side is the analog of the Gibbs partial volume and 
may well be designated partial pressure. In the integration the com­
position, temperature and volume are held constant, the number of mole­
cules of all kinds being increased from zero until there are «i molecules of 
gas No. 1, for which gas pt represents the equilibrium pressure. Applied 
to perfect gases it coincides with the ordinary ideal-gas partial pressure. 
I t may be integrated in terms of known functions when applied to the van 
der Waals equation with the above mode of compounding constants. The 
results differed from the results of the first-mentioned calculations, even 
when the integration of Equation 11 was carried out graphically using the 
Keyes equation. 

The method of testing the consistency of equilibrium data and equations 
of state consists in principle in calculating the change of the ^- thermo­
dynamic potential U-TS + PV for the change of state—pure reactants 
at arbitrary pressure giving pure resultants at the same pressure and tem­
perature. This change must be independent of the pressure and concen­
trations in the equilibrium box, which pressure and concentrations are 
given by the equilibrium data used. This is of course equivalent to cal­
culating fugacities and substituting in the simple mass-action expression, 
to see whether this is constant. There is naturally no special virtue in 
fugacity, although it is mathematically very convenient in certain special 
calculations when VAp cannot be integrated in terms of known functions 
from the equation of state used. 

Even when checks are obtained in such a calculation, they may be due 
to compensations, the individual equilibrium pressures or fugacities 
possibly being greatly in error. In the course of much unreported calcu­
lation I have observed such large compensation at work. For a good 
control a simpler equilibrium must be chosen, so that individual equilib­
rium pressures can be measured and calculated. 

The ideally simple equilibrium system would be hydrogen separated 
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by a palladium membrane from a mixture of hydrogen and inert gas. 
Since palladium is not rapidly permeated at low temperatures and hydro­
gen is a relatively perfect gas, especially at high temperatures, this system 
is not so very promising and apparently has not been carefully studied 
from this point of view, though L,6wenstein12 has introduced such a mem­
brane into the study of equilibria, assuming ideal-gas relationships. The 
following method is in principle nearly as simple and is more general in 
certain respects. 

We may use as the equivalent of a semi-permeable membrane a'system 
of mutually insoluble solid phases (n in number) which together with a 
pure gas phase form a univariant system. At a definite temperature these 
solid phases will have a definite equilibrium pressure, determinable by 
experiment. Then an inert gas may be introduced and the equilibrium 
concentration in the gas phase and total pressure may be measured. 
From the densities (or eventually also the compressibilities) of the solid 
phases, we may calculate the equilibrium pressure of the solid phases under 
the increased external pressure. This result must then be equal to the 
equilibrium pressure of the active gas in the mixture of known temperature, 
pressure and composition and can be regarded as the experimentally 
determined equilibrium pressure of the gas in the mixture. 

It is a reasonable expectation that the solid phases will not dissolve 
enough inert gas to require a correction. Such a solubility would mean 
that the substitute for a semi-permeable membrane is imperfect. The 
advantage of choosing a univariant system is that the addition of inert 
gas will in general change the masses of the solid phases, but in the case of 
a system which is univariant the equilibrium pressure of the solid phases 
will be unaffected and therefore no analysis of the solids will be necessary. 
It is necessary only to ensure that none has entirely disappeared. This 
may be done by addition of active gas, when the total pressure must be 
unchanged after re-establishment of equilibrium. 

A limitation is imposed on the variety of data which can be obtained in 
this way from the given solid phases, due to the fact that the total pres­
sure is a function of the composition. 

One way of justifying the foregoing theory is by reference to the Gibbs 
theory. Gibbs always divided the energy, entropy, etc., of a system 
among the individual phases, in consequence of which any component 
possessed a potential, a partial volume, etc., in each phase. There is no 
logical necessity for always doing this. We may better, in a special treat­
ment of univariant systems, divide the energy, entropy, volume", etc., 
as follows: one portion to the gas phase, the rest to the condensed phases 
taken collectively. We shall refer to the solid phases, assumed to be mu-

12 LSwenstein, Z. physik. Chem., 54, 715 (1906). In Ramsay's experiments [Phil. 
Mag., [5] 38, 206 (1894)] equilibrium was obviously not attained, nor especially sought. 
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tually insoluble, as the condensate. The condensate has then a potential, 
a partial molal volume, etc., with respect to a given component and the 
Gibbs theory applies to these quantities just as to the usual quantities 
distributed among individual phases, the arguments not being changed. 
In particular, the change of potential with (total) pressure is measured 
by the partial volume per unit of mass, but now the partial molal volume of 
the condensate, unlike that quantity for a pure substance, is physically inter-
pretable, being in fact the algebraic sum of the molal volumes of the solids 
entering into the reaction in question. Therefore the change of equilibrium 
pressure of the condensate with external pressure can be calculated from 
the partial molal volume, as was assumed in the foregoing theory. Since 
the equilibrium pressure of a condensate is not dependent upon the mass 
ratios of its constituents, the value of its potential must also be independent. 

Experimentation is at present in progress on the determination of the 
equilibrium pressure of ammonia in mixture with nitrogen, using some of 
the compounds of metal halides with ammonia as a virtual semi-permeable 
membrane, in the hope of being able to correlate the results with pressure-
volume-temperature data on the gases. 

Summary 

1. The mass-action law for real gases is briefly discussed. No proposed 
exact equations permit calculation of equilibrium concentrations from 
equations of state of pure gases. The upper limits in the integrals of 
Vdp are still unknown, being called here "equilibrium pressures" (of single 
gases in mixtures). 

2. The rule of Lewis and Randall for calculating the fugacity of a gas 
in a mixture would suffice, if it were exact. An exact rule is given with an 
added term containing the integral from zero to the total pressure of 

( ^ ) dp, based on the assumption that at great volumes the equi-
\ OMi Wi/ 
librium pressure is equal to the ideal-gas partial pressure. 

3. With the aid of this assumption, when necessary, it is shown ther-
modynamically that all three propositions—exactness of the rule, additivity 
of volumes and additivity of heat content—follow from any one of the three. 

4. Equilibria involving three gaseous species are too complicated to 
permit a critical test of such rules, owing to compensation of errors. To 
provide an attack on the simplest case a method of experimentation is 
outlined for determining equilibrium pressure by means of a virtually semi­
permeable membrane, consisting of the solids of a univariant system. The 
thermodynamic discussion involves attributing chemical potentials and 
partial volumes to the condensed mass of solid phases, which are considered 
collectively as if they were a single phase in the Gibbs treatment. 

CAMBRIDGE A, MASSACHUSETTS 


